This documentation is automatically generated by online-judge-tools/verification-helper
#include "Mathematics/garner.hpp"
連立一次合同式の解 $\pmod M$ を求めます。
似たような問題として、中国剰余定理があります。
連立一次合同式
\[x \equiv b_1 \pmod{m_1}\] \[x \equiv b_2 \pmod{m_2}\] \[\vdots\] \[x \equiv b_K \pmod{m_K}\]と同値な連立一次合同式であって、$m_i, m_j$ が互いに素、$0 \leq b_i < m_i$ となるように書き換えます。
この合同式に解が存在するならば $true$ を、存在しないのならば $false$ を返します。
連立一次合同式の解の存在条件や一意性については 中国剰余定理を参照してください。
制約
T
は int
, long long
計算量
$m_i, m_j (i \neq j)$ が互いに素な連立一次合同式
\[x \equiv b_1 \pmod{m_1}\] \[x \equiv b_2 \pmod{m_2}\] \[\vdots\] \[x \equiv b_K \pmod{m_K}\]の解 $x \pmod lcm(m_1, m_2, \ldots, m_K)$ に対して、 $x \pmod M$ を返します。
内部の計算で使用する型を U
に指定してください。
制約
T
, U
は int
または long long
U
で表現可能計算量
#include <bits/stdc++.h>
#include "Mathematics/garner.hpp"
using namespace std;
int main() {
// 17
cout << "garner({3, 6}, {7, 11}, 10000) = " << tk::garner<int, int>({3, 6}, {7, 11}, 10000) << endl;
// 2
cout << "garner({3, 6}, {7, 11}, 5) = " << tk::garner<int, int>({3, 6}, {7, 11}, 5) << endl;
vector<int> b{2, 3, 4}, m{10, 20, 30};
if (!tk::pre_garner(b, m)) cout << "no" << endl; // no
b = {2, 12, 22};
if (tk::pre_garner(b, m)) {
for (int i = 0; i < 3; ++i) cout << "b[i] = " << b[i] << ", m[i] = " << m[i] << endl;
// 52
cout << "garner(b, m, 1000000) = " << tk::garner<int, long long>(b, m, 1000000) << endl;
// 2
cout << "garner(b, m, 10) = " << tk::garner<int, int>(b, m, 10) << endl;
}
}
2020/05/05: https://qiita.com/drken/items/ae02240cd1f8edfc86fd
#ifndef INCLUDE_GUARD_GARNER_HPP
#define INCLUDE_GUARD_GARNER_HPP
#include <vector>
#include <cassert>
#include <type_traits>
#include "Mathematics/euclid.hpp"
#include "Mathematics/mod_pow_inv.hpp"
/**
* @brief https://tkmst201.github.io/Library/Mathematics/garner.hpp
*/
namespace tk {
template<typename T>
bool pre_garner(std::vector<T> & b, std::vector<T> & m) noexcept {
static_assert(std::is_integral<T>::value);
static_assert(std::is_signed<T>::value);
for (int i = 0; i < static_cast<int>(b.size()); ++i) {
b[i] = b[i] % m[i] + (b[i] >= 0 ? 0 : m[i]);
for (int j = 0; j < i; ++j) {
T g = gcd(m[i], m[j]);
if ((b[i] - b[j]) % g != 0) return false;
m[i] /= g; m[j] /= g;
T gi = gcd(g, m[i]), gj = g / gi;
do {
g = gcd(gi, gj);
gi *= g; gj /= g;
} while (g != 1);
m[i] *= gi; m[j] *= gj;
b[i] %= m[i]; b[j] %= m[j];
}
}
return true;
}
template<typename T, typename U>
T garner(const std::vector<T> & b, const std::vector<T> & m, const T M) {
static_assert(std::is_integral<T>::value);
assert(b.size() == m.size());
const int n = b.size();
assert(n > 0);
{
T g = 0;
for (auto v : m) {
assert(v > 0);
g = gcd(g, v);
}
assert(n == 1 || g == 1);
}
assert(M > 0);
std::vector<T> sum(n + 1, 0), ip(n + 1, 1);
for (int i = 0; i < n; ++i) {
if (m[i] == 1) continue;
U t = (b[i] % m[i] + static_cast<U>(2) * m[i] - sum[i]) % m[i] * mod_inv(ip[i], m[i]) % m[i];
for (int j = i + 1; j < n; ++j) {
sum[j] = (sum[j] + ip[j] * t) % m[j];
ip[j] = static_cast<U>(ip[j]) * m[i] % m[j];
}
sum[n] = (sum[n] + ip[n] * t % M) % M;
ip[n] = static_cast<U>(ip[n]) * m[i] % M;
}
return sum.back();
}
} // namespace tk
#endif // INCLUDE_GUARD_GARNER_HPP
#line 1 "Mathematics/garner.hpp"
#include <vector>
#include <cassert>
#include <type_traits>
#line 1 "Mathematics/euclid.hpp"
#line 5 "Mathematics/euclid.hpp"
#include <utility>
#include <tuple>
#line 8 "Mathematics/euclid.hpp"
#include <cmath>
/**
* @brief https://tkmst201.github.io/Library/Mathematics/euclid.hpp
*/
namespace tk {
template<typename T>
constexpr T gcd(T a, T b) noexcept {
static_assert(std::is_integral<T>::value);
assert(a >= 0);
assert(b >= 0);
while (b != 0) {
const T t = a % b;
a = b; b = t;
}
return a;
}
template<typename T>
constexpr T lcm(T a, T b) noexcept {
static_assert(std::is_integral<T>::value);
assert(a >= 0);
assert(b >= 0);
if (a == 0 || b == 0) return 0;
return a / gcd(a, b) * b;
}
template<typename T>
constexpr std::tuple<T, T, T> ext_gcd(T a, T b) noexcept {
static_assert(std::is_integral<T>::value);
static_assert(std::is_signed<T>::value);
assert(a != 0);
assert(b != 0);
T a1 = (a > 0) * 2 - 1, a2 = 0, b1 = 0, b2 = (b > 0) * 2 - 1;
a = std::abs(a);
b = std::abs(b);
while (b > 0) {
const T q = a / b;
T tmp = a - q * b; a = b; b = tmp;
tmp = a1 - q * b1; a1 = b1; b1 = tmp;
tmp = a2 - q * b2; a2 = b2; b2 = tmp;
}
return {a, a1, a2};
}
} // namespace tk
#line 1 "Mathematics/mod_pow_inv.hpp"
#line 6 "Mathematics/mod_pow_inv.hpp"
/**
* @brief https://tkmst201.github.io/Library/Mathematics/mod_pow_inv.hpp
*/
namespace tk {
template<typename T>
constexpr T mod_pow(T x, T n, T m) noexcept {
static_assert(std::is_integral<T>::value);
assert(m > 0);
assert(n >= 0);
x = x % m + (x >= 0 ? 0 : m);
T res = 1 % m;
while (n > 0) {
if (n & 1) res = res * x % m;
x = x * x % m;
n >>= 1;
}
return res;
}
template<typename T>
constexpr T mod_inv(T x, T m) noexcept {
static_assert(std::is_integral<T>::value);
static_assert(std::is_signed<T>::value);
assert(m > 0);
x = x % m + (x >= 0 ? 0 : m);
T x1 = 1, y = m, y1 = 0;
while (y > 0) {
const T q = x / y;
T tmp = x - q * y; x = y; y = tmp;
tmp = x1 - q * y1; x1 = y1; y1 = tmp;
}
assert(x == 1);
if (x1 == m) x1 = 0;
if (x1 < 0) x1 += m;
return x1;
}
} // namespace tk
#line 10 "Mathematics/garner.hpp"
/**
* @brief https://tkmst201.github.io/Library/Mathematics/garner.hpp
*/
namespace tk {
template<typename T>
bool pre_garner(std::vector<T> & b, std::vector<T> & m) noexcept {
static_assert(std::is_integral<T>::value);
static_assert(std::is_signed<T>::value);
for (int i = 0; i < static_cast<int>(b.size()); ++i) {
b[i] = b[i] % m[i] + (b[i] >= 0 ? 0 : m[i]);
for (int j = 0; j < i; ++j) {
T g = gcd(m[i], m[j]);
if ((b[i] - b[j]) % g != 0) return false;
m[i] /= g; m[j] /= g;
T gi = gcd(g, m[i]), gj = g / gi;
do {
g = gcd(gi, gj);
gi *= g; gj /= g;
} while (g != 1);
m[i] *= gi; m[j] *= gj;
b[i] %= m[i]; b[j] %= m[j];
}
}
return true;
}
template<typename T, typename U>
T garner(const std::vector<T> & b, const std::vector<T> & m, const T M) {
static_assert(std::is_integral<T>::value);
assert(b.size() == m.size());
const int n = b.size();
assert(n > 0);
{
T g = 0;
for (auto v : m) {
assert(v > 0);
g = gcd(g, v);
}
assert(n == 1 || g == 1);
}
assert(M > 0);
std::vector<T> sum(n + 1, 0), ip(n + 1, 1);
for (int i = 0; i < n; ++i) {
if (m[i] == 1) continue;
U t = (b[i] % m[i] + static_cast<U>(2) * m[i] - sum[i]) % m[i] * mod_inv(ip[i], m[i]) % m[i];
for (int j = i + 1; j < n; ++j) {
sum[j] = (sum[j] + ip[j] * t) % m[j];
ip[j] = static_cast<U>(ip[j]) * m[i] % m[j];
}
sum[n] = (sum[n] + ip[n] * t % M) % M;
ip[n] = static_cast<U>(ip[n]) * m[i] % M;
}
return sum.back();
}
} // namespace tk